

Extracting Hadronic Resonances using Jet Ensembles

LHC New Physics Signatures Workshop January 10, 2008

Amitabh Lath

working with: Shan-Huei Chuang, Eva Halkiadakis, Rouven Essig, Scott Thomas Rutgers, the State University of NJ

Motivation

 Exotic searches at colliders always involve MET or leptons/photons.

Strong production

- ElectroWeak decays
- Backgrounds suppressed
- New physics → Jets?
 - Strong production cross-section
 - Strong decays (multi-jet)
 - Backgrounds sevre

New Physics in Multi-Jets

- Look for new physics in multi-jets
- Studying pp \rightarrow QQ \rightarrow 3j+3j = 6j
 - **Q**=**g** = SU(3)_c Adjoint Majorana Fermion
- Challenging
 - Large backgrounds!
 - Magnitude of multi-jet backgrounds from higher order processes difficult to calculate a priori (α sⁿ).
 - But possible new physics may be hidden in jets!
- Get guidance from all-hadronic top studies
- Make use of kinematic features and correlations
- Use an ensemble of jet combinations
- Techniques may also be useful for jets produced with leptons, MET, photons and we can study this later

Signal & Background

Signal:

Pythia

Model it as RPV (uud Yukawa) gluino

MSbar masses 200 GeV (real mass 290 GeV) and up

iet

6 Jet Background: ALPGEN → Pythia

Hadronic Top Background: Pythia

Detector Simulator: PGS (fast simulation)

Studies with full simulation CMSSW ongoing

Analysis: (Ch)Root

"Bump hunt"

No leptons, No MET, No W resonance, No b

Cuts: Trigger Level

- |η | < 3 of the first 6 jets
 (PGS requires a "jet" to have at least 5 GeV of p_T)
- (1st jet > 400 GeV .OR. 2nd jet > 350 GeV .OR. 3rd jet > 195 GeV .OR. 4th jet > 80 GeV .OR. sum had > 1000 GeV)

This is dominated by the 4th jet trigger. Adding the rest adds only a few percent.

Cuts: Analysis Level

Cut on sum p_⊤ of the 1st 6 jets:

$$\sum_{i=1}^{6} p_{T,i} >$$

- gluino200 600 GeV
- gluino300 700 GeV
- gluino500 1100 GeV
- gluino700 1500 GeV
- Cut on the 6th jet p_T >
 - 30 GeV, 60 GeV, 90 GeV, 120 GeV

We are trying different cuts to optimize signal vs. background

Sum P_{T,jets} vs. P_{T,6th jet}

 $pp \rightarrow QQ \rightarrow jjjjjj$ $N_{iet} \ge 6$

Example

Cuts: $\sum_{i=1}^{6} p_{T, i} > 600 \text{ GeV}, p_{T, 6th jet} > 90 \text{ GeV}$

Signal Efficiency ~ 0.02

Selecting Jet Triplets: Ensemble of Jet Combinations

Which Combination?

There are 20 possible triplets among 6 jets.

Use MC matching info to find which triplets are correct most often:

Combo	%correc	ct Combo	%correct	Jets ordered in p _T	
235	5.3	246	3.0	(e.g. 123 are three highest p_T jets)	
234	4.7	135	2.9	(c.g. 123 are tiffee fightest p _T jets)	
236	4.3	345	2.6	Combo oo = ia como et	
245	4.3	256	2.0	Combo 235 is correct	
145	4.2	134	2.0	5.3% of the time.	
146	4.0	126	1.7	Combososia not omona	
156	3.4	346	1.6	Combo 123 is not among	
136	3.2	125	1.4	the top 16 combinations.	

Using Kinematic Correlations: Mass vs. Sum P_T

Extract Kinematic Features from Combinatoric Confusion

Want to isolate good triplets

Horizontal Branch: Region of high signal to combinatoric background contrast

Using Kinematic Correlations: Mass vs. Sum P_T

Extract Kinematic Features from Combinatoric Confusion

Want to isolate good triplets

Horizontal Branch: Region of high signal to combinatoric background contrast

Mass vs. Sum P_T for Backgrounds

Cuts: Analysis Level

- For ANY triplet of jets from the set of the "best" 16 require: $M_{iii} < \sum |p_{T,i}|$ offset
 - where M_{iii} is the invariant mass of the 3 jets
 - $\sum |p_{T,i}|$ is the scalar sum $|p_T|$ of the 3 jets
 - offset is either infinity (i.e. no cut) or 0 GeV,100 GeV,200 GeV, or 300 GeV

This cut isolates the "horizontal branch" with the "correct" invariant mass, and removes a lot of background and combinatoric background within the signal.

Now Fit and Optimize Cuts

Fit Results

MSbar mass	cut set	eff_SG		eak mass (2σ)		nBG	S/B	S S/Sqrt(B)	
200 600	30_0_100 60_0_100 90_0_100	0.0874	0.0477	285.3	11514 4568 2070			10.99 19.27 27.77	S/sqrt(B) Looks good, Can be optimized Further.
200 600	30_0_200 60_0_200 90_0_200	0.0261	0.0121	286.6	3433 1821 1017	199651 12848 1917		7.68 16.07 2 3 .23	
	60_0_300 90_0_300		•		891 429	3592 574	0.25 0.75	14.87 17.92	
500 110	060_0_200 090_0_200 0_120_0_200	0.0547	0.0341	643.0		10305 1646 344	0.02 0.07 0.15	1.82 2.72 2.78	
500 110	060_0_300 090_0_300 0_120_0_300	0.0208	0.0126	643.9 646.5 650.2	83 50 26	3019 581 125		1.52 2.06 2.28	Not so rosy for higher masses
500 110	060_0_400 090_0_400 0_120_0_400 =======	0.0084	0.0045	646.8 648.6 652.2	37 23 13	1018 209 46 =====	0.04 0.11 0.29	1.17 1.60 1.95	======

Systematic Uncertainty: Jet Resolution

- A good understanding of jets is important in this analysis.
- There are uncertainties in the jet resolution.
- Procedure (Ref. CMS Physics TDR):
 - Add an additional smearing to the jet energy which broadens the overall jet resolution by 10%.
 - Done by throwing a Gaussian random number and adding an energy term which is 46% of the jet resolution (to get overall widening of 10%).
- Jet-by-jet, event-by-event smearing:

$$E_{\rm T}^{\rm jet} = E_{\rm T}^{\rm jet} + {\rm Gaus}[0, 0.46 * \sigma(E_{\rm T}, \eta)]$$

Reference jet resolution the central jets:
$$\sigma(E_{\mathrm{T}}^{\mathrm{jet}},|\eta|<1.4)=(5.8~\mathrm{GeV})\oplus(1.25*\sqrt{E_{\mathrm{T}}^{\mathrm{jet}}})\oplus0.033*E_{\mathrm{T}}^{\mathrm{jet}}$$
 In CMS

Reference jet resolution the forward jets:

$$\sigma(E_{
m T}^{
m jet}, 1.4 < |\eta| < 3.0) = (4.8\,{
m GeV}) \oplus (0.89*\sqrt{E_{
m T}^{
m jet}}) \oplus 0.043*E_{
m T}^{
m jet}$$

In PGS:
$$\sigma(E_T^{jet}) \propto 0.8 \sqrt{E_T^{jet}}$$
 (for HCAL)

Jet Smearing

18 16

Extracting Hadronic Resonances using Jet Ensembles, A. Lath, Rutgers

Jet Smearing With Cuts

More Kinematic Correlations

Note "Correct" Triplets – Horizontal Branch

Background is Very Similar to Combinatoric Confusion

Note Shaping from Cuts

Summary

- We can search for new physics with jets.
- Full CMSSW studies almost blessed....
 - We are (re)making ALPGEN n-jet samples...
 - Lots of conversations with Mangano about (multi) jets
 - Doing this study in CDF data (<u>see 2σ top quark bump!</u>)
- Question: Can these "ensemble" techniques work for other analyses?
- Close collaboration b/wn exp. and theory essential in LHC era.